Edexcel Maths GCSE - Surds (H)

1. Show that $\frac{6-\sqrt{8}}{\sqrt{2}-1}$ can be written in the form $a + b\sqrt{2}$ where a and b are integers.

$$\frac{6-\sqrt{8}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$$

$$= \frac{(6-\sqrt{8})(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}$$

$$= \frac{6\sqrt{2}+6-\sqrt{8}\times2}{2+\sqrt{2}-\sqrt{2}-1}$$

$$= \frac{3\sqrt{2}+2}{1}$$

$$= \frac{2}{\sqrt{3}\sqrt{2}}$$

Numerator

$$6\sqrt{2} + 6 - \sqrt{8 \times 2} - \sqrt{8}$$

 $6\sqrt{2} + 6 - \sqrt{16} - \sqrt{8}$
 $6\sqrt{2} + 6 - 4 - \sqrt{8}$
 $6\sqrt{2} + 2 - \sqrt{8}$
 $6\sqrt{2} + 2 - \sqrt{2} \times \sqrt{2} \times \sqrt{2}$
 $6\sqrt{2} + 2 - \sqrt{2} \times \sqrt{2} \times \sqrt{2}$
 $6\sqrt{2} + 2 - \sqrt{2} \times \sqrt{2} \times \sqrt{2}$
 $3\sqrt{2} + 2$
Denominator
 $2 + \sqrt{2} - \sqrt{2} - \sqrt{2}$
 $2 - \sqrt{2}$

(Total for Question is 3 marks)

2. $\sqrt{5}(\sqrt{8} + \sqrt{18})$ can be written in the form $a\sqrt{10}$ where *a* is an integer. Find the value of *a*.

$$\sqrt{a} \times \sqrt{b} = \sqrt{ab} \quad (Law of Surds)$$

$$\sqrt{5} (\sqrt{5} + \sqrt{18}) = \sqrt{5}\sqrt{8} + \sqrt{5}\sqrt{18}$$

$$= \sqrt{40} + \sqrt{90} \quad (1) \quad (00king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (2) \quad (00king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (1) \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (1) \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (1) \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} + \sqrt{90} \quad (10king for Square numbers)$$

$$= \sqrt{40} \quad (10king for Square numbers)$$

$$= \sqrt{40}$$

(Total for Question is 3 marks)

3. Martin did this question.

Rationalise the denominator of
$$\frac{14}{2+\sqrt{3}}$$

Here is how he answered the question.

$$\frac{14}{2 + \sqrt{3}} = \frac{14 \times (2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})} \qquad (2 + \sqrt{3})(2 - \sqrt{3})$$
$$= \frac{28 - 14\sqrt{3}}{4 + 2\sqrt{3} - 2\sqrt{3} + 3} = (2 \times 2) + (2 \times \sqrt{3}) + (\sqrt{3} \times -\sqrt{3})$$
$$= \frac{28 - 14\sqrt{3}}{7} = 4 - 2\sqrt{3} \qquad \sqrt{3} \times -\sqrt{3} = -\sqrt{9} = -3$$

Martin's answer is wrong.

(a) Find Martin's mistake.

$$\sqrt{3} x - \sqrt{3} = -3$$
, not 3

(1)

Sian did this question.

Rationalise the denominator of $\frac{5}{\sqrt{12}}$

Here is how she answered the question.

$$\frac{5}{\sqrt{12}} = \frac{5\sqrt{12}}{\sqrt{12} \times \sqrt{12}}$$
$$= \frac{5\times\sqrt{3}\sqrt{2}}{12}$$
$$\sqrt{12} = \sqrt{4}\sqrt{3}$$
$$= 2\sqrt{3}$$
$$= \frac{5\sqrt{2}}{4}$$

Sian's answer is wrong.

(b) Find Sian's mistake.

$$\sqrt{12} = 2\sqrt{3}$$
, not $3\sqrt{2}$

(1)

(Total for Question is 2 marks)

4.	Show that $\frac{(\sqrt{18} + \sqrt{2})^2}{\sqrt{8} - 2}$ can be written in the form $a(b + \sqrt{2})$ wh	ere a and b are integers.
	$(\sqrt{18} + \sqrt{2})^2 \times \frac{\sqrt{18} + 2}{\sqrt{18} + 2}$	$\sqrt{18} = \sqrt{2} \times \sqrt{9}$ $= 3\sqrt{2}$
	18-2 18+2	$(4\sqrt{2})^2 = 4^2 \times \sqrt{2}^2$
	$\frac{-(118+12)(18+2)}{(18-2)(18+2)}$	= 16 × 2 = 32
	$= (4\sqrt{2})^2 (\sqrt{8} + 2)$	$\sqrt{8} = \sqrt{4} \times \sqrt{2}$ = $2\sqrt{2}$
	8+258-258-4	
	$= \frac{32(\sqrt{8}+2)}{4}$	
	= 8(58+2)	
	$= 8(2+2\sqrt{2}) \\= 16(1+\sqrt{2})$	

(Total for Question is 3 marks)

Edexcel Maths GCSE - Surds (H)

2 2

(2)

5. (a) Express $\sqrt{3} + \sqrt{12}$ in the form $a\sqrt{3}$ where *a* is an integer.

$$\sqrt{3} + \sqrt{12}$$

$$= \sqrt{3} + \sqrt{4 \times 3}$$

$$= \sqrt{3} + (\sqrt{4})(\sqrt{3})$$

$$= \sqrt{3} + 2\sqrt{3} \qquad (1)$$

$$= 3\sqrt{3}$$
Express $\left(\frac{1}{2}\right)^7$ in the form $\frac{\sqrt{b}}{2}$ where b and c are integers.

PhysicsAndMathsTutor.com

Edexcel Maths GCSE - Surds (H)

(3)

7. Show that $\frac{\sqrt{180} - 2\sqrt{5}}{5\sqrt{5} - 5}$ can be write	ten in the form $a + \frac{\sqrt{5}}{b}$ where a and b are integers.
$\int 180 = \int 9x20 b-c =$	a(btc) (b-c)(btc) Jab = JaxJb b ² -c ²
$= \int q \times \int z \circ$ $= 3 \times \int z \circ$	$\frac{65-25}{55-5} = \frac{45}{55-5}$
= 3x JU x JS = 3x ZX JS = 6JS	$= \frac{1}{(55+5)(55+5)}$
$\frac{\alpha}{btc} = \frac{\alpha}{b} + \frac{\alpha}{c}$	= 100 + 20 J5 125 - 25
b = 5	$= \frac{100+20}{100}$ $= \frac{100}{100}$ $= \frac{100}{100}$ $= \frac{100}{100}$ $= 1 + \frac{15}{5}$
	(Total for Question is 4 marks)

Edexcel Maths GCSE - Surds (H)

8. Show that $\frac{8 + \sqrt{12}}{5 + \sqrt{3}}$ can be written in the form $\frac{a + \sqrt{3}}{b}$, where a and b are integers.

Rationalise the denominator using 'Difference of two squares.'

$$\frac{8 + \sqrt{12}}{5 + \sqrt{3}} \times (5 - \sqrt{3})$$

$$= \frac{(8 + \sqrt{12})(5 - \sqrt{3})}{(5 + \sqrt{3})(5 - \sqrt{3})}$$

$$= \frac{(8 + \sqrt{12})(5 - \sqrt{3})}{(5 + \sqrt{3})(5 - \sqrt{3})}$$

$$= \frac{(8 + \sqrt{12})(5 - \sqrt{3})}{(5 + \sqrt{3})(5 - \sqrt{3})}$$

$$= \sqrt{14} \times 3 = \sqrt{14} \times 3 = 2\sqrt{3}$$

$$= \frac{(40 - 8\sqrt{3} + 5\sqrt{12} - (\sqrt{3})(\sqrt{12}))}{25 - 5\sqrt{3} + 5\sqrt{3} - (\sqrt{3})(\sqrt{3})}$$

$$= \frac{(40 - 8\sqrt{3} + 10\sqrt{3} - \sqrt{36})}{25 - 3}$$

$$= \frac{(40 - 8\sqrt{3} + 10\sqrt{3} - \sqrt{36})}{25 - 3}$$

$$= \frac{(40 + 2\sqrt{3} - 6)}{22} = \frac{344 + 2\sqrt{3}}{22}$$
(Total for Question is 4 marks)

$$= \frac{(17 + \sqrt{3})}{1}$$